pyRobots Documentation
Release 2.0

Séverin Lemaignan et al.

February 17, 2017

Contents

1 Main features

2 Code Documentation
2.1 Mainentry points
2.2 Full package documentation

3 Minimum Working Example
4 Indices and tables

Python Module Index

[}

17

19

21

pyRobots Documentation, Release 2.0

As you may well know if you ever tried to use them to implement under-specified, dynamic tasks, state machines are
not always the most convenient tool to code robot controllers.

pyRobots provides a set of Python decorators to easily turn standard functions into background asynchronous tasks
which can be pre-empted at anytime and to make your controller resource-aware (no, a robot can not turn left AND
right at the same time).

It also provides an event-based mechanism to monitor specific conditions and asynchronously trigger actions.

It finally provides a library of tools to manage poses in a uniform way (quaternions, Euler angles and 4D matrices, I
look at you) and to interface with existing middlewares (ROS, naoqi, aseba...). Note that pyRobot s is not itself a
robotic middleware.

pyRobots is inspired by the URBI language.

Contents 1

http://wiki.ros.org/smach
https://github.com/urbiforge/urbi

pyRobots Documentation, Release 2.0

2 Contents

CHAPTER 1

Main features

 Turns any Python function into a background action with the decorator @action;
* Robot actions are non-blocking by default: they are instanciated as futures (lightweight threads);

* Actions can be pre-empted (cancelled) at any time via signals (the Act ionCancelled signal is raised):

@action
def safe_walk (robot) :
try:
robot .walk ()
except ActionCancelled:
robot.go_back_to_rest_pose()

action = robot.safe_walk()
time.sleep (1)
action.cancel ()

¢ Create event with robot . whenever (<condition>) .do (<action>);

* Lock specific resources with a simple @1lock (.. .) in front of the actions. When starting, actions will wait
for resources to be available if needed:

L_ARM = Resource ()
R_ARM Resource ()
ARMS = CompoundResource (L_ARM, R_ARM)

@action

@lock (ARMS)

def lift_box (robot) :
#...

@action

@lock (L_ARM)

def wave_hand (robot) :
#...

@action

@lock (L_ARM, wait=False)

def scratch_head (robot) :
#...

robot.lift_box ()
robot .wave_hand () # waits until 1ift _box 1s over

pyRobots Documentation, Release 2.0

robot.scratch_head () # skipped if 1ift_box or
wave_hand are still running

* Supports compound resources (like WHEELS == LEFTWHEEL + RIGHTWHEEL);

* Poses are managed explicitely and can easily be transformed from one reference frame to another one (integrates
with ROS TF when available);

» Extensive logging support to debug and replay experiments.

Support for a particular robot only require to subclass GenericRobot for this robot (and, obviously, to code the
actions you want your robot to perform).

Combined with a knowledge base, pyRobots makes an interesting starting point for a high-level cogni-
tive controller for robots.

4 Chapter 1. Main features

CHAPTER 2

Code Documentation

The documentation is currently sparse. Please fill bug reports everytime you can not figure out a specific bit.

Main entry points

* robots.robot.GenericRobot

Full package documentation

robots package
Subpackages

robots.concurrency package

robots.concurrency.action module

robots.concurrency.action.action (fin)
When applied to a function, this decorator turns it into a asynchronous task, starts it in a different thread, and
returns a ‘future’ object that can be used to query the result/cancel it/etc.

The main methods available on these ‘future’ object include RobotAction.wait () to wait until the action
completes, and RobotAction.cancel () torequest the action to stop (ie, it raises an Act ionCancelled
signal within the action thread). See RobotAct ion for the full list of available methods.

Action implementation may want to handle the ActionCancelled signal to properly process cancellation
requests.

Usage example:

@action

def safe_walk (robot) :

try:
robot .walk ()

except ActionCancelled:
robot.go_back_to_rest_pose()

action = robot.safe_walk()
time.sleep (1)
action.cancel ()

https://github.com/chili-epfl/pyrobots/issues

pyRobots Documentation, Release 2.0

In this example, after one second, the safe_walk action is cancelled. This sends the signal
ActionCancelled to the action, that can appropriately terminate.

robots.concurrency.concurrency module Concurrency support for pyRobot.

This module provides:
 an implementation of SignalingThread (threads that explicitely handle signals like cancelation)
* heavily modified Python futures to support robot action management.
* A future executor that simply spawn one thread per future (action) instead of a thread pool.

These objects should not be directly used. Users should instead rely on the action () decorator.

Helpful debugging commands:

>>> sys._current_frames()
>>> inspect.getouterframes (sys._current_frames () [<id>]) [0][0].f_locals

class robots.concurrency.concurrency.FakeFuture (result)
Used in the ‘immediate’ mode.

result ()
wait ()

class robots.concurrency.concurrency.RobotAction (actionname)
Bases: concurrent. futures._base.Future

add_subaction (action)
cancel ()

childof (action)
Returns true if this action is a child of the given action, ie, has been spawned from the given action or any
of its descendants.

result ()
set_parent (action)
set_thread (thread)

wait ()
alias for result()

class robots.concurrency.concurrency.RobotActionExecutor

actioninfo (future_id)

cancel_all ()
Blocks until all the currently running actions are actually stopped.

cancel_all others ()
Blocks until all the currently running actions except the calling one are actually stopped.

get_current_action()
Returns the RobotAction linked to the current thread.

submit (fn, *args, **kwargs)

class robots.concurrency.concurrency.RobotActionThread (future, initialized, fn, args,

kwargs)
Bases: robots.concurrency.concurrency.SignalingThread

6 Chapter 2. Code Documentation

pyRobots Documentation, Release 2.0

run ()

class robots.concurrency.concurrency.SignalingThread (*args, **kwargs)
Bases: threading.Thread

cancel ()

pause ()

robots.concurrency.signals module

exception robots.concurrency.signals.ActionCancelled
Bases: exceptions.UserWarning

exception robots.concurrency.signals.ActionPaused
Bases: exceptions.UserWarning

robots.events package

robots.events.events module pyRobots’ events implementation

class robots.events.events.EventMonitor (robot, var, value=None, becomes=None,
above=None, below=None, increase=None, de-
crease=None, oneshot=False, max_firing_freq=10,
blocking=True)

ABOVE = >’

BECOMES = ‘becomes’
BELOW = ‘<’
DECREASE = ¢-=’
INCREASE = ‘+=’
VALUE = ‘=’

close ()

do (cb)
stop_monitoring ()

wait ()
Blocks until an event occurs.

class robots.events.events.Events (robot)
Exposes high-level primitives to create and cancel event monitors.

robots.robot.GenericRobot creates and holds an instance of Events () that you can use: you should
not need to instanciate yourself this class.

cancel_all()
Cancels all event monitors and interrupt running event callbacks (if any).

close()

every (var, max_firing_freq=10, blocking=True, **kwargs)
Alias for whenever ().

on (var, **kwargs)
Creates a new EventMonitor to watch a given event model (one shot).

On the first time the event is fired, the monitor is removed.

2.2. Full package documentation 7

pyRobots Documentation, Release 2.0

Returns a new instance of EventMonitor for this event.

stop_all _monitoring()
Stops all event monitoring, but do not interrupt event callbacks, if any is running.

You may want to use stop_all _monitoring () instead of cancel_all () when you need to pre-
vent new events of being raised from an event callback (cancel_all () would interrupt this callback as
well).

whenever (var, max_firing_freq=10, blocking=True, **kwargs)
Creates a new EventMonitor to continuously watch a given event.

var can either be a predicate or the name of an entry in the robot’s state container (robot .state).
In the later case, a supplementary keyword argument amongst value=, become=, above=, below=,
increase=, decrease= must be provided to define the behaviour of the monitor.

Example:

using the robot state:

robot .whenever ("touch_sensor", value = True) .do (on_touched)
robot .whenever ("sonar", below = 0.4).do(on_obstacle_near)
robot .whenever ("bumper", becomes = True).do(on_hit_obstacle)

using a predicate:
def is_tired(robot):
do any computation you want...
now = datetime.datetime.now ()
evening = now.replace (hour=20, minute=0, second=0, microsecond=0)
return robot.state["speed"] > 1.0 and now > evening

robot .whenever (is_tired) .do(go_to_sleep)

Parameters
* var - either a predicate (callable) or one of the key of robot . state.

* max_firing freq-sethow many times pe second this event may be triggered (default
to 10Hz. 0 means as many as possible).

* blocking —if True, the event callback is blocking, preventing new event to be triggered
until the callback has completed (defaults to True).

* kwargs — the monitor behaviour (cf above)

Returns a new instance of EventMonitor for this event.

robots.poses package

robots.poses.position module
class robots.poses.position.FrameProvider
Bases: object

get_transform (frame)
Returns the transformation between this frame and the map.

If the frame is unknown, raises UnknownFrameError.
exception robots.poses.position.InvalidFrameError
Bases: exceptions.RuntimeError

8 Chapter 2. Code Documentation

pyRobots Documentation, Release 2.0

class robots.poses.position.PoseManager (robot)
Bases: object

A pose is for us a dict {"x":x, 'vy’':y, 'z':z, "gx’':9x, 'qy’:qy, ’'qz’:qz, 'qw’:qw,
"frame’ : frame}, ie a (X, y, z) cartesian pose in meter interpreted in a specific reference frame, and a
quaternion describing the orientation of the object in radians.

This class helps with:
econverting from other convention to our convention,
econverting back to other conventions.
add_frame_provider (provider)

angular_distance (anglel, angle2)
Returns the (minimal, oriented) angular distance between two angles after normalization on the unit circle.

Angles are assumed to be radians.
The result is oriented (from anglel to angle2) and guaranteed to be in range]-pi, pi].

distance (posel, pose2="base_link’)
Returns the euclidian distance between two pyRobots poses.

If the second pose is omitted, “base_link” is assumed (ie, distance between a pose and the robot itself).
euler (pose)

get (raw)
takes a loosly defined ‘pose’ as input and returns a properly formatted and normalized pose.

Input may be:
* aframe
* an incomplete pose dictionary
* alist or tuple (x,y,2), (X,y,z,frame) or (z,y,z,rX,ry,rz) or (X,y,z,qX,qy,qz,qw)

inframe (pose, frame)
Transform a pose from one frame to another one.

Uses transformation matrices. Could be refactored to use directly quaternions.

static isin (point, polygon)
Determines if a 2D point is inside a given 2D polygon or not.

Parameters
* point —a (x,y) pair
¢ polygon — a list of (x,y) pairs.
Copied from: http://www.ariel.com.au/a/python-point-int-poly.html

myself ()
Returns the current robot’s pose, ie the pose of the ROS TF ‘base_link’ frame.

normalize (pose)

static normalize_angle (angle)
Returns equivalent angle such as -pi < angle <= pi

static normalizedict (pose)

normalizelist (pose)

2.2. Full package documentation 9

http://www.ariel.com.au/a/python-point-int-poly.html

pyRobots Documentation, Release 2.0

pantilt (pose, ref="/base_link’)
Convert a Xyz target to pan and tilt angles from a given viewpoint.

Parameters
* pose — the target pose
¢ ref — the reference frame (default to base_link)
Returns (pan, tilt) in radians, in]-pi, pi]
static quaternion_from_euler (rx, ry, rz)

test_angular_distance ()
Small regression test for the computation of angular distances

exception robots.poses.position.UnknownFrameError
Bases: exceptions.RuntimeError

robots.poses.ros_positions module
class robots.poses.ros_positions.ROSFrames
Bases: robots.poses.position.FrameProvider

asROSpose (pose)
Returns a ROS PoseStamped from a pyRobots pose.

Parameters pose — a standard pyRobots pose (SPARK id, TF frame, [X,y,z], [X,y,Z,IX,1y,rZ],

0.

[X,¥,2,9X,qy,qW,qz], { X’:.e, Y i })
Returns the corresponding ROS PoseStamped
get_transform (frame)

inframe (pose, frame)
Transforms a given pose in the given frame.

publish_transform (name, pose)
Publishes a new TF frame called ‘name’ based on the pyRobots transform ‘pose’.

Note that this function does not normalize the input pose, which must already be a dictionary with the keys
[X,¥,Z,9X,qY,qZ,qw,frame].

robots.resources package

robots.resources.lock module
robots.resources.lock.lock (res, wait=True)
Used to define which resources are acquired (and locked) by the action.

This decorator may be used as many times as required on the same function to lock several resources.

Usage example:

L_ARM = Resource ()
R_ARM = Resource ()
ARMS = CompoundResource (L_ARM, R_ARM)

@action

@lock (ARMS)

def 1lift box(robot):
#...

10 Chapter 2. Code Documentation

pyRobots Documentation, Release 2.0

@action

@lock (L_ARM)

def wave_hand (robot) :
#...

@action

@lock (L_ARM, wait=False)

def scratch_head (robot) :
#...

robot.lift_box ()
robot.wave_hand () # waits until 1ift_box 1s over
robot.scratch_head() # skipped if 1ift_box or

wave_hand are still running

Parameters
* res —an instance of Resource or CompoundResource

* wait — (default: true) if t rue, the action will wait until the resource is available, if false,
the action is skipped if the resource is not available.

robots.resources.resources module
class robots.resources.resources.CompoundResource (*args, **kwargs)

acquire (wait=True, acquirer="unknown’)

release ()
class robots.resources.resources.Resource (name="")

acquire (wait=True, acquirer="unknown’)

release ()

robots.mw package
robots.helpers package

robots.helpers.ansistrm module An ANSI-based colored console log handler, based on
https://gist.github.com/758430, and with a few special features to make sure it works well in pyRobots’ con-
current environment.

class robots.helpers.ansistrm.ConcurrentColorizingStreamHandler (scheme=None)
Bases: logging.StreamHandler

A log handler that:

o(tries to) guarantee strong thread-safety: the threads generating log message can be interrupted at any time
without causing dead-locks (which is not the case with a regular St reamHandler: the calling thread
may be interrupted while it owns a lock on stdout)

epropagate pyRobots signals (ActionCancelled, ActionPaused)
ecolors the output (nice!)

bright_scheme = {40: (None, ‘red’, False, False), 10: (None, ‘blue’, False, False), 20: (None, ‘white’, False, False), 50: (

2.2. Full package documentation 11

https://gist.github.com/758430

pyRobots Documentation, Release 2.0

color_map = {‘blue’: 4, ‘black’: 0, ‘yellow’: 3, ‘cyan’: 6, ‘green’: 2, ‘magenta’: 5, ‘white’: 7, ‘red’: 1}

colorize (message, record)

csi = “«x1b[’

dark_scheme = {40: (None, ‘red’, False, False), 10: (None, ‘blue’, False, False), 20: (None, ‘black’, False, False), 50: (‘re
emit (record)

format (record)

handle (record)
Override the default handle method to remove locking, because Python logging, while thread-safe accord-
ing to the doc, does not play well with us raising signals (ie exception) at anytime (including while the
logging system is locking the output stream).

is_tty

mono_scheme = {40: (None, None, False, False), 10: (None, None, False, False), 20: (None, None, False, False), 50: (None
output_colorized (message)

reset = ‘\x1b[0m’

run ()

xmas_scheme = {40: (‘red’, ‘yellow’, False, True), 10: (‘red’, ‘yellow’, False, True), 20: (‘red’, ‘white’, False, True), 50: (

robots.helpers.ansistrm.main ()

robots.helpers.misc module
robots.helpers.misc.enable_logger_ print ()
robots.helpers.misc.enum (*sequential, **named)

class robots.helpers.misc.valuefilter (maxlen=10)

MAX LENGTH =10
append (val)
get ()

robots.robot module

class robots. robot .GenericRobot (actions=None, supports=0, dummy=False, immediate=False, con-

figure_logging=True)
Bases: object

This class manages functionalities that are shared across every robot ‘backends’ (ROS, Aseba,...)

You are expected to derive your own robot implementation from this class, and it is advised to use instances of
GenericRobot within a context manager (ie with MyRobot as robot: ... construct).

Its role comprises of:
eautomatic addition of proxy methods for the robot actions
eactions execution (spawning threads for actions via self.executor
*pose management through the robot . poses instance variable

eevent monitoring through the robot .on(...) .do(...) interface

12 Chapter 2. Code Documentation

pyRobots Documentation, Release 2.0

GenericRobot defines several important instance variables, documented below.

Variables

* state - the state vector of the robot. By default, a simple dictionary. You can overwrite it
with a custom object, but it is expected to provide a dictionary-like interface.

* poses —an instance of PoseManager.

* executor - instance of RobotActionExecutor responsible for spawning and start-
ing threads for the robot actions. You should not need to access it directly.

Example of a custom robot:

from robots import GenericRobot
class MyRobot (GenericRobot) :

def _ init_ (self):
super (MyRobot, self).__init__ ()

create (and set) one element in the robot's state. Here a bumper.
(by default, self.state is a dictionary. You can safely

overwrite it with any dict-like object.

self.state["my_bumper"] = False

do whatever other initialization you need for your robot

Implement here all the accessors you need to talk to the robot
low—-level, like:

def send_goal (self, pose):
move your robot using your favorite middleware

print ("Starting to move towards $s" % pose)

def stop(self):
stop your robot using your favorite middleware

print ("Motion stopped")

def whatever_other_lowlevel_method_you_need(self):
#.o..
pass

create actions
@action
def move_forward (robot) :
#onn
pass

with MyRobot () as robot:
Turn on DEBUG logging.
Shortcut for logging.getLogger ("robots").setLevel (logging.DEBUG)

robot .debug ()

subscribe to events...
robot .whenever ("my_bumper", value = True) .do (move_forward)

try:
while True:

2.2. Full package documentation 13

pyRobots Documentation, Release 2.0

time.sleep(0.5)

except KeyboardInterrupt:
pass

Note: A note on debugging

Several methods are there to help with debugging:

eloglevel (): default to INFO. logging.DEBUG can be useful.

—silent (): alias for loglevel (logging.WARNING)

—info (): alias for loglevel (logging.INFO)

—debug (): alias for loglevel (logging.DEBUG)

erunning (): prints the list of running tasks (with their IDs)

eactioninfo (): give details on a given action, including the exact line being currently executed

Parameters

actions (11ist) - alist of packages that contains modules with actions (ie, modules with
functions decorated with @act ion). Proxies to these actions are appended to the instance
of GenericRobot upon construction and become available as myrobot .goto (. ..),
myrobot.lookat (...),etc.

supports — (default: 0) a mask of middlewares the robot supports. Supported
middlewares are listed in robots.mw.__init__ .py. For example supports =
ROS | POCOLIBS means that both ROS and Pocolibs are supported. This requires the cor-
responding Python bindings to be available.

dummy (boolean) — (default: False) if True, the robot is in ‘dummy’ mode: no ac-
tual actions are performed. The exact meaning of ‘dummy’ is left to the subclasses of
GenericRobot.

immediate (boolean) — (default: False) if True, actions are executed in the main
thread instead of their own separate threads. Useful for some specific debugging scenarios.

configure_logging (boolean) — if True (default), configures a default colorized
console logging handler. Otherwise, you need to configure yourself the Python logger.

actioninfo (id)
Print details on a running action (including the current line number).

cancel_all()
Sends a ‘cancel’ signal (ie, the Act ionCancelled exception is raised) to all running actions.

Note that, if called within a running action, this action is cancelled as well. If this is not what you want,

use cancel_all_others () instead.

Actions that are not yet started (eg, actions waiting on a resource availability) are simply removed for the

run queue.

cancel all others()

Sends a

‘cancel’ signal (ie, the Act ionCancelled exception is raised) to all running actions, except for
the action that call cancel_all others () (note that its currently running subactions will be however

cancelled).

14

Chapter 2. Code Documentation

pyRobots Documentation, Release 2.0

Actions that are not yet started (eg, actions waiting on a resource availability) are simply removed for the
run queue.

close ()
static configure_console_logging ()
debug ()

filtered (name, val)
Adds a value to a labelled data serie and returns the temporal average of the data serie values.

The averaging window size is set in helpers.misc.valuefilter .MAX_LENGTH.
info ()
load_actions (actions)
loglevel (level=20)

running ()
Print the list of running actions.

silent ()

static sleep (duration)
Active sleep. Must used by actions to make sure they can be quickly cancelled.

supports (middleware)

wait (var, **kwargs)
Alias to wait on a given condition. Cf robots.events.Events for details on the acceptable condi-
tions.

wait_for_ state_update (timeout=None)
Blocks until the robot state has been updated.

This is highly dependent on the low-level mechanisms of your robot, and should almost certainly be
overriden in your implementation of a GenericRobot subclass.

The default implementation simply waits ACTIVE_SLEEP_RESOLUTION seconds.

class robots.robot .State
Bases: dict

robots.introspection module
robots.roslogger module

class robots.roslogger.RXConsoleHandler (fopic="/rosout’)
Bases: logging.Handler

emit (record)

2.2. Full package documentation 15

pyRobots Documentation, Release 2.0

16 Chapter 2. Code Documentation

CHAPTER 3

Minimum Working Example

...that includes the creation of a specific robot

import time

from robots import GenericRobot

from robots.decorators import action, lock
from robots.resources import Resource

from robots.signals import ActionCancelled

create a 'lockable' resource for our robot
WHEELS = Resource ("wheels")

class MyRobot (GenericRobot) :

def _ init_ (self):
super (MyRobot, self).__init__ ()

create (and set) one element in the robot's state. Here a bumper.
self.state.my_bumper = False

do whatever other initialization you need :-)

def send_goal (self, pose):
move your robot using your favorite middleware

o

print ("Starting to move towards ¢s" % pose)

def stop(self):
stop your robot using your favorite middleware
print ("Motion stopped")

def whatever_lowlevel_method_you_need(self):
pass

@lock (WHEELS)
Qaction
def move_forward (robot) :
""" We write action in a simple imperative, blocking way.

mmn

the target pose: simply x += 1.0m in the robot's frame. pyRobots
will handle the frames transformations as needed.
target = [1.0, 0., 0., "base_link"]

try:

17

pyRobots Documentation, Release 2.0

robot.send_goal (target)

while (robot.pose.distance (robot.pose.myself (), target) > 0.1):
robot.sleep is exactly like time.sleep, except it lets the pyrobots

signals pass through.
robot.sleep(0.5)

print ("Motion succeeded")

except ActionCancelled:
1f the action is cancelled, clean up your state

robot.stop ()

with MyRobot () as robot:

Turn on DEBUG logging.
Shortcut for logging.getLogger ("robots").setLevel (logging.DEBUG)

robot .debug ()

robot .whenever ("my_bumper", value = True) .do (move_forward)

try:
while True:
time.sleep(0.5)
except KeyboardInterrupt:
pass

18 Chapter 3. Minimum Working Example

CHAPTER 4

Indices and tables

¢ genindex
* modindex

e search

19

pyRobots Documentation, Release 2.0

20 Chapter 4. Indices and tables

Python Module Index

r

robots.
.concurrency.concurrency, 6
.concurrency.signals, 7
.events.events, 7
.helpers.ansistrm, 11

robots
robots
robots
robots

robots.
.introspection, 15

.mw, 11
.poses.position, 8
.poses.ros_positions, 10

robots
robots
robots
robots

robots.
.resources.resources, |1
.robot, 12

.roslogger, 15

robots
robots
robots

concurrency.action,5

helpers.misc, 12

resources.lock, 10

21

pyRobots Documentation, Release 2.0

22 Python Module Index

Index

A

ABOVE (robots.events.events.EventMonitor attribute), 7

acquire() (robots.resources.resources.CompoundResource
method), 11

acquire() (robots.resources.resources.Resource method),
11

action() (in module robots.concurrency.action), 5

ActionCancelled, 7

actioninfo() (robots.concurrency.concurrency.RobotActionExecutor

method), 6
actioninfo() (robots.robot.GenericRobot method), 14
ActionPaused, 7

add_frame_provider() (robots.poses.position.PoseManager

method), 9

add_subaction() (robots.concurrency.concurrency.RobotAction

method), 6
angular_distance()
method), 9
append() (robots.helpers.misc.valuefilter method), 12
asROSpose() (robots.poses.ros_positions. ROSFrames
method), 10

(robots.poses.position.PoseManager

B

BECOMES (robots.events.events.EventMonitor
tribute), 7
BELOW (robots.events.events.EventMonitor attribute), 7

at-

cancel_all_others() (robots.robot.GenericRobot method),

14
childof() (robots.concurrency.concurrency.RobotAction

method), 6
close() (robots.events.events.EventMonitor method), 7
close() (robots.events.events.Events method), 7
close() (robots.robot.GenericRobot method), 15
color_map (robots.helpers.ansistrm.ConcurrentColorizingStreamHandler
attribute), 11
colorize() (robots.helpers.ansistrm.ConcurrentColorizingStreamHandler

method), 12
CompoundResource (class in robots.resources.resources),

11
ConcurrentColorizingStreamHandler
robots.helpers.ansistrm), 11
configure_console_logging() (robots.robot.GenericRobot

static method), 15
csi (robots.helpers.ansistrm.ConcurrentColorizingStreamHandler

attribute), 12

(class in

D

dark_scheme (robots.helpers.ansistrm.ConcurrentColorizingStreamHandler
attribute), 12

debug() (robots.robot.GenericRobot method), 15

DECREASE (robots.events.events.EventMonitor
tribute), 7

at-

bright_scheme (robots.helpers.ansistrm.ConcurrentColorizirfgﬁtt?‘eﬁﬁ@{éﬁ%ll’&ts'POSeS-POSiﬁon-PoseManager method),

attribute), 11

C

cancel() (robots.concurrency.concurrency.RobotAction

method), 6

cancel() (robots.concurrency.concurrency.SignalingThread

method), 7

cancel_all() (robots.concurrency.concurrency.RobotActionEXB2RIS:108ge

method), 6
cancel_all() (robots.events.events.Events method), 7
cancel_all() (robots.robot.GenericRobot method), 14

do() (robots.events.events.EventMonitor method), 7

emit() (robots.helpers.ansistrm.ConcurrentColorizingStreamHandler
method), 12

emit() (robots.roslogger.RXConsoleHandler method), 15

r_print() (in module robots.helpers.misc), 12

enum() (in module robots.helpers.misc), 12

euler() (robots.poses.position.PoseManager method), 9

EventMonitor (class in robots.events.events), 7

cancel_all_others() (robots.concurrency.concurrency.Rob0tAECYF(S}'iEf&‘é‘@ﬁf;oiln robots.events.events), 7

method), 6

every() (robots.events.events.Events method), 7

23

pyRobots Documentation, Release 2.0

F normalizedict() (robots.poses.position.PoseManager
FakeFuture (class in robots.concurrency.concurrency), 6 ~ static method), 9 N
filtered() (robots.robot.GenericRobot method), 15 normalizelist() (robots.poses.position.PoseManager
format() (robots.helpers.ansistrm.ConcurrentColorizingStreamHandlelmethOd)’ 9
method), 12
(@)

FrameProvider (class in robots.poses.position), 8
on() (robots.events.events.Events method), 7
G output_colorized() (robots.helpers.ansistrm.ConcurrentColorizingStreamHa

GenericRobot (class in robots.robot), 12 method), 12

get() (robots.helpers.misc.valuefilter method), 12 P
get() (robots.poses.position.PoseManager method), 9
get_current_action() (robots.concurrency.concurrency.Robo@eeidi{F kkahts: poses. position.PoseManager method), 9

method), 6 pause() (robots.concurrency.concurrency.SignalingThread
get_transform() (robots.poses.position.FrameProvider method), 7

method), 8 PoseManager (class in robots.poses.position), 8
get_transform() (robots.poses.ros_positions. ROSFrames publish_transform() (robots.poses.ros_positions.ROSFrames

method), 10 method), 10

H Q

handle() (robots.helpers.ansistrm.ConcurrentColorizingStreati#igngilen_from_euler() (robots.poses.position.PoseManager
method), 12 static method), 10

I R

INCREASE (robots.events.events.EventMonitor at- Telease() (robots.resources.resources.CompoundResource

tribute), 7 method), 11
info() (robots.robot.GenericRobot method), 15 release() (robots.resources.resources.Resource method),
inframe() (robots.poses.position.PoseManager method), 9 11
inframe() (robots.poses.ros_positions. ROSFrames ~ reset (robots.helpers.ansistrm.ConcurrentColorizingStreamHandler
method), 10 attribute), 12
InvalidFrameError, 8 Resource (class in robots.resources.resources), 11
is_tty (robots.helpers.ansistrm.ConcurrentColorizingStreamEestdier (robots.concurrency.concurrency.FakeFuture
attribute), 12 method), 6
isin() (robots.poses.position.PoseManager static method), result() (robots.concurrency.concurrency.RobotAction
9 method), 6
RobotAction (class in robots.concurrency.concurrency), 6
L RobotActionExecutor (class in
load_actions() (robots.robot.GenericRobot method), 15 robots.concurrency.concurrency), 6
lock() (in module robots.resources.lock), 10 RobotActionThread (class in
loglevel() (robots.robot.GenericRobot method), 15 robots.concurrency.concurrency), 6
robots.concurrency.action (module), 5
M robots.concurrency.concurrency (module), 6

main() (in module robots.helpers.ansistrm), 12 robots.concurrency.signals (module), 7

MAX_LENGTH (robots.helpers.misc.valuefilter at- robots.events.even'ts (module), 7
tribute), 12 robots.helpers.ansistrm (module), 11

mono_scheme (robots.helpers.ansistrm. ConcurrentColorlzlrgi?é%lqﬁlﬁ?{&lg}lSC (module), 12
attribute), 12 robots.introspection (module), 15

myself() (robots.poses.position.PoseManager method), 9 robots.mw (mod}ﬂ.e), 11
robots.poses.position (module), 8

N robots.poses.ros_positions (module), 10

robots.resources.lock (module), 10

robots.resources.resources (module), 11

robots.robot (module), 12

robots.roslogger (module), 15

normalize() (robots.poses.position.PoseManager
method), 9

normalize_angle() (robots.poses.position.PoseManager
static method), 9

24 Index

pyRobots Documentation, Release 2.0

ROSFrames (class in robots.poses.ros_positions), 10

run() (robots.concurrency.concurrency.RobotActionThread
method), 6

run() (robots.helpers.ansistrm.ConcurrentColorizingStreamHandler
method), 12

running() (robots.robot.GenericRobot method), 15

RXConsoleHandler (class in robots.roslogger), 15

S

set_parent() (robots.concurrency.concurrency.RobotAction

method), 6

set_thread() (robots.concurrency.concurrency.RobotAction
method), 6

SignalingThread (class in

robots.concurrency.concurrency), 7
silent() (robots.robot.GenericRobot method), 15
sleep() (robots.robot.GenericRobot static method), 15
State (class in robots.robot), 15

stop_all_monitoring() (robots.events.events.Events
method), 8

stop_monitoring() (robots.events.events.EventMonitor
method), 7

submit() (robots.concurrency.concurrency.RobotActionExecutor
method), 6

supports() (robots.robot.GenericRobot method), 15

T

test_angular_distance() (robots.poses.position.PoseManager
method), 10

U

UnknownFrameError, 10

V

VALUE (robots.events.events.EventMonitor attribute), 7
valuefilter (class in robots.helpers.misc), 12

W

wait() (robots.concurrency.concurrency.FakeFuture
method), 6

wait() (robots.concurrency.concurrency.RobotAction
method), 6

wait() (robots.events.events.EventMonitor method), 7

wait() (robots.robot.GenericRobot method), 15

wait_for_state_update() (robots.robot.GenericRobot
method), 15

whenever() (robots.events.events.Events method), 8

X

xmas_scheme (robots.helpers.ansistrm.ConcurrentColorizingStreamHandler
attribute), 12

Index 25

	Main features
	Code Documentation
	Main entry points
	Full package documentation

	Minimum Working Example
	Indices and tables
	Python Module Index

